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A B S T R A C T

Calibrated functional magnetic resonance imaging (fMRI) is a method to independently measure the metabolic
and hemodynamic contributions to the blood oxygenation level dependent (BOLD) signal. This technique typi-
cally requires the use of a respiratory challenge, such as hypercapnia or hyperoxia, to estimate the calibration
constant, M. There has been a recent push to eliminate the gas challenge from the calibration procedure using
asymmetric spin echo (ASE) based techniques. This study uses simulations to better understand spin echo (SE) and
ASE signals, analytical modelling to characterize the signal evolution, and in vivo imaging to validate the
modelling. Using simulations, it is shown how ASE imaging generally underestimates M and how this depends on
several parameters of the acquisition, including echo time and ASE offset, as well as the vessel size. This un-
derestimation is the result of imperfect SE refocusing due to diffusion of water through the extravascular envi-
ronment surrounding the microvasculature. By empirically characterizing this SE attenuation as an exponential
decay that increases with echo time, we have proposed a quadratic ASE biophysical signal model. This model
allows for the characterization and compensation of the SE attenuation if SE and ASE signals are acquired at
multiple echo times. This was tested in healthy subjects and was found to significantly increase the estimates of M
across grey matter. These findings show promise for improved gas-free calibration and can be extended to other
relaxation-based imaging studies of brain physiology.

Introduction

Calibrated functional magnetic resonance imaging (fMRI) was
developed to disentangle the hemodynamic and metabolic contributions
to the blood oxygenation level dependent (BOLD) signal using simulta-
neous measurements of the gradient echo BOLD signal and cerebral
blood flow (CBF) (Davis et al., 1998; Hoge et al., 1999). A calibration
experiment is run to estimate the calibration constant, M, and is most
commonly performed using a respiratory challenge where subjects inhale
a gas mixture with additional carbon dioxide and/or oxygen to elicit
changes in the BOLD signal and CBF or arterial oxygen tension (Bulte
et al., 2012; Chiarelli et al., 2007; Davis et al., 1998; Gauthier and Hoge,
2012). The use of hypercapnia, the state of elevated CO2 in blood, suffers
from multiple limitations: it may violate the assumption of iso-
metabolism on which standard calibration models depend (Bulte et al.,

2009; Chen and Pike, 2010a; Hall et al., 2011; Xu et al., 2011), and it
typically measures perfusion changes using time-resolved arterial spin
labelling (ASL), an imaging technique with a low signal-to-noise ratio.
Similarly, the use of hyperoxia, the state of elevated O2 in blood, requires
either the additional measurement of the oxygen extraction fraction and
the concentration of hemoglobin in blood or the assumption of those two
parameters (Chiarelli et al., 2007; Mark et al., 2011) that can lead to bias
(Blockley et al., 2012). Hyperoxia may also produce concomitant de-
creases in CBF if blood CO2 is not controlled (Bulte et al., 2007; Croal
et al., 2015). In general, gas challenges require additional apparatus and
increased subject tolerance and preparation, thus, a gas-free alternative
would greatly improve the appeal of calibrated fMRI.

To date, a limited number of studies have examined gas-free cali-
bration of the BOLD signal by substituting the gas challenge with a
measurement of R2

0 at rest, the reversible component of the transverse
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relaxation rate (Blockley et al., 2015; Fujita et al., 2006; Kida et al., 2000;
Shu et al., 2015). Under the assumption that the primary difference be-
tween the apparent and the irreversible relaxation rates (R2* and R2,
respectively) in a voxel is from the field inhomogeneities generated by
deoxyhemoglobin (deoxyHb) (Blockley et al., 2012; Fujita et al., 2006),
R2

0 is the favoured candidate for gas-free calibration due to its intimate
relationship with baseline blood oxygen saturation and the deoxygenated
cerebral blood volume (CBV) (Yablonskiy and Haacke, 1994). However,
as in most areas of MR relaxometry, the apparent values of R2

0 are highly
dependent on the measurement technique and may produce different
values due to multi-exponential decay, imperfect spin echo refocusing,
and other acquisition related factors (Ni et al., 2014). Blockley et al.
(2015) recently proposed a calibration technique that is insensitive to
multi-exponential decay and intrinsic tissue T2 differences based on using
spin echo (SE) and asymmetric spin echo (ASE) imaging. When compared
against traditional hypercapnic calibration, their ASE calibration
underestimated M across grey matter (GM) and the visual cortex, on
average. This underestimation was postulated to arise from incomplete
spin echo refocusing of spins diffusing in the extravascular space. This
effect is the same source of contrast in SE BOLD imaging, and is known to
be vessel-size and field strength dependent (Boxerman et al., 1995).

In addition to imperfect SE refocusing, several other sources may
confound the observed R2

0 values. Macroscopic field inhomogeneities,
which are prominent around air-tissue interfaces, lead to dramatic geo-
metric distortions and signal intensity distortions in echo planar imaging
(EPI). The intensity distortions tend to increaseR2

0 and these effects can be
mitigated by a range of acquisition-related methods (Blockley and Stone,
2016). Cerebrospinal fluid (CSF) has recently been shown to significantly
increase measured R2

0 in grey matter (Simon et al., 2016; Stone and
Blockley, 2016). This is postulated to arise from a chemical shift between
CSF and parenchyma, resulting in enhanced signal dephasing in tissue
voxels with partial voluming with CSF (He and Yablonskiy, 2007). By
adding a fluid attenuated inversion recovery (FLAIR) preparation to the
imaging sequence, the CSF signal can be eliminated and the R2

0 of
neighbouring parenchymal voxels tends to decrease. Unlike field in-
homogeneities and CSF, which can be prospectively and retrospectively
managed, additional non-deoxyHb sources of tissue magnetic suscepti-
bility, such as iron depositions and myelin, will alter R2

0 in a less pre-
dictable manner (they can increase or decrease R2

0, depending on their
susceptibility and relative concentration). Kida et al. (2000) found that
these other sources of susceptibility have negligible contributions to the
observedR2 andR2* (and henceR2

0) at 7 T in rats. In this study, whichwas
performedat afield strengthof 3 T,wedonot consider these other sources,
consistent with earlier work (Blockley et al., 2015; Fujita et al., 2003).

The purpose of this study was to determine how incomplete refo-
cusing of SE and ASE signals affects the estimation of R2

0 and how it can
be accounted for to obtain a more accurate estimate of M. Simulations
were used to determine the vessel-size dependence of the R2

0 underes-
timation and to develop a strategy to retrospectively correct for it. This
strategy was tested in vivo, taking precautions to avoid confounds from
macroscopic field inhomogeneities and CSF partial volume. These ASE-
based M calculations were compared against hypercapnic calibration in
the same subjects.

Theory

Calibrated fMRI with asymmetric spin echo imaging

The standard calibrated fMRI model that relates changes in the ce-
rebral metabolic rate of oxygen (CMRO2) and CBF to changes in the
gradient echo (GE) BOLD signal is (Davis et al., 1998)

ΔBOLD
BOLD0

¼ M

 
1"

!
CBF
CBF0

"α"β! CMRO2

CMRO2j0

"β
!
; (1)

where the subscript ‘0’ refers to a value at baseline and ΔBOLD¼ BOLD –
BOLD0. α is the Grubb constant and accounts for coupling between CBV
and CBF arising from an empirical power law relation between the two
(Grubb et al., 1974). β describes the non-linear dependence of the change
in R2* on the susceptibility offset of blood relative to tissue (Berman and
Pike, 2016; Boxerman et al., 1995). M is proportional to the resting
concentration of deoxyHb in blood and it can be considered the
maximum fractional increase in the GE BOLD signal, which would
theoretically occur upon removal of all deoxyHb in blood (i.e., venous
oxygen saturation → 100%) (Gauthier et al., 2011; Hoge et al., 1999;
Krieger et al., 2014). M is estimated with hypercapnia (MHC) by
measuring changes in CBF and the BOLD signal using

MHC ¼ ΔBOLD
BOLD0

,

1"
!
CBF
CBF0

"α"β
: (2)

Rather than perturb the oxygen saturation (SO2) like a gas-based
calibration would, a spin echo image perturbs the spins of the system
such that, in the absence of diffusion, the SE will refocus all the spin
dephasing induced by deoxyHb present in blood vessels and will,
therefore, be equal to the maximum possible GE BOLD signal. To then
estimate R2

0, one can acquire another image with R2*-weighting, since
R2*¼ R2 þ R2

0. Acquiring an ASE image is appropriate for this because it
will have the same slice profile as the SE image. Example SE and ASE
sequences and their transverse signal decays are displayed in Fig. 1. If the
spin echo in the ASE image is shifted earlier by a time τ, the signal can be
described by

SASEðTE; τÞ ¼ S0e"R2 ⋅TEe"R'
2τ; (3)

where TE is the echo time, τ is the ASE offset, and S0 is the signal at
TE¼ 0. In the convention used here, τ> 0 corresponds to TE occurring a
time τ after the SE occurs. Eq. (3) assumes τ> 0 but in the case of τ< 0, τ
should be replaced by jτj. The SE signal, SSE, is also described by Eq. (3)
but with τ¼ 0. If τ is chosen to be the same as the echo time used for
functional imaging, then M from ASE imaging (MASE) can be estimated
from the ratio of an SE and ASE image, both acquired at time TE (Blockley
et al., 2015):

MASE ¼ lnðSSE=SASEÞ ¼ R'
2τ: (4)

Quadratic spin echo attenuation

The model of gas-free calibration described above by Eq. (4) applies
in the absence of diffusion, where the 180& pulse will perfectly refocus

Fig. 1. A schematic of the SE and ASE pulse sequences and their transverse signal decay.
All three sequences share the same 90& excitation pulse and sample the signal at the same
echo time (TE, dotted vertical line). The black curve represents the pure SE sequence
signal decay. The dashed orange curve represents the ASE sequence signal decay when the
ASE offset is þτ. The dashed blue curve represents the ASE sequence signal decay when
the ASE offset is –τ. The three signals have no T2 decay, no diffusion effects, and only show
R2

0-related decay and refocusing. The two ASE signals are equal at TE.
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the dephasing surrounding blood vessels. To determine how SE attenu-
ation from diffusion depends on TE and τ, simulations of the SE and ASE
signals were run from vessel networks as a function of vessel radius.
These considered the decay resulting from field inhomogeneities only
and ignored intrinsic T2 decay (details provided in the Methods section
below). Fig. 2 shows examples of the simulations with diffusion for three
different vessel radii as a function of TE and the case of no diffusion at all.
The grey curves show the entire simulated time series, like the simulated
signals in Fig. 1, however, there are more spin echo times displayed. The
impact of diffusion on the individual simulated time series is that the
amount of SE attenuation increases with increasing TE and the time at
which maximum refocusing occurs shifts earlier in time than the TE.
Also, the amount of decay and refocusing both increase with increasing
vessel size. The coloured envelopes represent the signals at the echo
times, i.e., when the decays are actually sampled, be it the SE or ASE
signals. In the case of no diffusion, the signal refocuses perfectly at the SE
times and the SE and ASE signal envelopes are constant across TE. The
signal envelopes for all radii and for more values of τ are shown in Fig. 3.
The key qualitative observations are:

1. With respect to TE, the envelopes are all well described by a
quadratic-exponential decay early on and by linear-exponential decay
later, with the time to transition being proportional to vessel radius
and peaking or plateauing for the intermediate-to-larger radii.

2. With respect to τ, the envelope for a given radius is approximately a
shifted copy of that radius' envelope from τ¼ 0. The shift is by an
amount τ in time and, by definition, an amount R2

0τ along the ordi-
nate. R2

0 is smallest for small vessels (Boxerman et al., 1995), hence
the shift is smaller for them and greater for large vessels.

These observations, including the quadratic-to-linear transition
times, are examined in greater detail in the Supplementary Material. The
shift along the ordinate is R2

0τ, by definition, because at the beginning of
each curve, where TE¼ τ, the signal is a pure gradient echo signal,
implying that no refocusing pulse has been applied and that the signal
decay is due solely to the intrinsic R2

0 of the simulation network. If the
gradient echo decay is monoexponential, the signal at TE¼ τ will
therefore be reduced by a factor exp(R2

0τ). However, this decay is not

monoexponential, even in the absence of diffusion (Yablonskiy and
Haacke, 1994), so R2

0 will be the apparent R2
0 for the given τ.

The simulations above were repeated on networks populated by two
different distributions of vessel radii, referred to here as the Lauwers
(Lauwers et al., 2008) and Frechet (Germuska et al., 2013) distributions,
and shown in Fig. 4. The Lauwers distribution had very few radii>10 μm,
whereas the Frechet distribution peaked near 10 μm and had a long tail
out to 60 μm. Similar signal behaviour can be seen in the simulations
from the Lauwers and Frechet vessel-size distributions, shown in Fig. 5.
In this case, the Lauwers distribution, which is primarily microvascular,
appears to transition from quadratic-to linear-exponential decay earlier
than the Frechet distribution and its vertical shift is smaller, consistent
with the results in Fig. 3.

We propose that the diffusion-induced SE attenuation can be char-
acterized by ignoring the transition to linear-exponential decay and
considering the attenuation as an additional quadratic-exponential decay
term with rate constant (R2,diff)2. This decay would commence at TE¼ τ
and the ASE signal in Eq. (3) would be modified as

SASEðTE; τÞ ¼ S0e"R2 ⋅TEe"R'
2 ⋅τe"ðR2;diff Þ

2
ðTE"τÞ2 : (5)

We refer to this model of the ASE signal as the quadratic ASE (q-ASE)
model. The (R2,diff)2 term can be visualized by plotting the expression

ΔR2ðTEÞ ¼ "ln SSE
TE

¼ "lnðSASEðτ ¼ 0ÞÞ
TE

¼ "ln S0=TEþ R2 þ
#
R2;diff

$2TE

¼
#
R2;diff

$2TE:
(6)

The final equality is a simplification for the simulations only because S0 is
normalized to 1 and the intrinsic R2 is set to 0. This indicates that (R2,diff)2

can be estimated from the initial slope of ΔR2 vs. TE.
Taking the ratio ln(SSE/SASE) using Eq. (5) gives

ln
!
SSE
SASE

"
¼ ln

!
SASEðτ ¼ 0Þ
SASEðτÞ

"
¼ R'

2τ þ
#
R2;diff

$2τ2 " 2
#
R2;diff

$2τTE: (7)

Since τ' TE, the ratio will always be less than R2
0τ and is consistent with

M being underestimated from ln(SSE/SASE) alone, as in Eq. (4). From the

Fig. 2. Example simulated time series from spin echo (top row) and asymmetric spin echo, τ¼ 30ms, (bottom row) sequences with TE increasing in 4-ms increments. The individual time
series for each TE are shown by the greyscale curves, with black to grey representing earlier to later TEs. The coloured signal envelopes represent the signals at the echo times. In the case of
the SE simulations, each envelope shows only the signal at the SE times (tSE); in the case of the ASE simulations, each envelope shows only the signals at the times TE¼ tSE þ τ. The
maximum tSE simulated was 100ms, therefore, TE ranges from 30ms to 70ms for the ASE envelope. Each column depicts the simulations from a network containing a different vessel
radius (1 μm, 10 μm, or 100 μm) or the case of no diffusion. The plotted greyscale ASE signals are for a negative ASE offset but the resulting differences between their signal envelopes and
the signal envelopes from the positive offsets were negligible.
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linear TE dependence, it should be possible to estimate (R2,diff)2 and R2
0 if

this ratio is measured at two or more echo times.M can then be estimated
using

M ¼ eR
'
2 ⋅TEfunc " 1 ’ R'

2TEfunc; (8)

where TEfunc is now the BOLD echo time of the functional experiment that
the calibration is to be applied to.

Alternatively, one could use a fixed TE and fit the quadratic depen-
dence of Eq. (7) using several values of τ. However, more data would be
required to fit the quadratic relationship and other experiments and
theories of SE decay have shown that this ratio can become quadratic
around the SE as a function of TE or τ in the absence of diffusion (An and
Lin, 2003; Yablonskiy, 1998; Yablonskiy and Haacke, 1994). Therefore,
these two distinct quadratic behaviours could confound the estimate of
(R2,diff)2. If one tries to avoid the quadratic ASE attenuation regime
altogether by sampling at long τ and TE, when the attenuation has
transitioned to linear-exponential decay, then the R2

0 underestimation
will persist and it will be irrecoverable. This can be shown by replacing
exp[-(R2,diff)2(TE-τ)2] in Eq. (5) with a linear-exponential decay equiva-
lent and then calculating the log-ratio. In this case, the linear decay term
can describe the underestimation of R2

0 but it becomes indistinguishable

from R2
0 itself as they have the same dependence on τ. Therefore, sam-

pling in the linear decay regime provides no straightforward means for
correcting the SE attenuation.

Methods

Simulations

The simulations in this study used the deterministic diffusion method
(Bandettini and Wong, 1995). This consisted of populating a
two-dimensional (2D) plane with vessels to the desired CBV, where blood
vessels were modelled as cylinders perpendicular to the plane. To model
the random orientation of the vessels, the direction of the main B0 field
was randomized for each vessel (Miller and Jezzard, 2008). This
vessel-wise randomization of the B0 direction was used rather than
physically reorienting the vessels relative to the plane because it resulted
in a more easily controlled CBV and still generated the desired distri-
bution of field offsets since the field offsets along a direction parallel to a
cylinder are invariant. An example vessel distribution and the resulting
field offsets are shown in Fig. 6.

The deterministic diffusion simulation method spatially discretizes
the area over which the simulation is run onto a lattice and, for a given
distribution of vessels, calculates the field offsets generated by them over
this lattice (Bandettini and Wong, 1995; Pannetier et al., 2013).
Following an initial 90& excitation pulse, each element of the lattice has a
uniform magnetization with an initial phase of 0 and magnitude of 1. In
time steps, δt, the magnetization at the (k,l)-th lattice element, Mkl, pre-
cesses by an angle Δϕkl¼ γ ΔBkl δt, where ΔBkl is the field offset at that
lattice element. Diffusion is modelled by an isotropic, Gaussian blurring
of the magnetization along each dimension independently. This was
implemented by linear convolution of the magnetization with the 1D
discrete diffusion kernel with a width parameter equal to the expected
mean-square displacement of the spins, σ2¼ 2Dδt, where D is the diffu-
sion coefficient of water in tissue (Pannetier et al., 2014). The k-th
element of the kernel is given by

Dk ¼ e"ðσ=ΔxÞ2 Ik
#
ðσ=ΔxÞ2

$
; (9)

where Δx is the physical spacing between lattice elements and Ik is the

Fig. 3. Logarithm of the ASE signal envelopes as a function of TE and vessel radius. Each sub-figure shows the envelope for different ASE offsets, τ, where τ¼ 0 corresponds to the pure spin
echo signal. Within each sub-figure, each curve represents the mean signal from a different vessel radius, and they all share the legend in (a). The ranges of TE for each sub-figure are τ '
TE' 100ms – τ. Error bars represent the mean( SD of the simulations across networks.

Fig. 4. Histograms of the Lauwers and Frechet vessel-size distributions. The values
represent the frequency with which the given ranges of radii occur across all vessel net-
works of a given distribution.

Fig. 5. Logarithm of the ASE signal envelopes as a function of TE for the Lauwers and Frechet vessel-size distributions. Each sub-figure shows the envelope for different ASE offsets, τ,
where τ¼ 0 corresponds to the pure spin echo signal. All sub-figures share the legend in (a). Error bars represent the mean( SD of the simulations across networks.
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modified Bessel function of the first kind of order k. The half-width of the
kernel was a minimum of 6σ and was extended, if necessary, until 1 - ΣDk
' 5e-8. This requirement ensures that the kernel is normalized and it was
empirically tested for accuracy with preliminary simulation tests. 180&

refocusing pulses were modelled by taking the complex conjugate of the
magnetization at each lattice element. Finally, the signal magnitude at
the n-th time point is given by

Sn ¼
1
N2

%%%%%
X

k;l

Mkl;n

%%%%%; (10)

where N is the number of lattice elements summed along each dimension
and the sum was only performed over the central 1/3 of the lattice width
along each dimension to avoid convolution edge effects.

The field offsets generated by each vessel were given by modelling
them as infinite cylinders perpendicular to the simulation plane with
(Ogawa et al., 1993):

ΔB0 ¼

8
>>><

>>>:

1
2
ΔχB0

!
R
r

"2

sin2ðθÞcosð2ϕÞ r ) R

1
6
ΔχB0

#
3 cos2ðθÞ " 1

$
r < R

; (11)

where R is the vessel radius, r is the distance from the point of interest to
the centre of the vessel, θ is the angle between B0 and the centre line of
the vessel, ϕ is the angle between the vector defined by r and the
component of B0 in the plane, and Δχ is the susceptibility difference
between the blood within the vessel and the surrounding tissue. The field
offsets from each vessel were independently calculated and summed
across the lattice to give ΔBkl.

To determine the echo time dependence of the SE attenuation, simu-
lations were run from time 0 (i.e., immediately after excitation) up to the
spin echo time (tSE), with tSE incremented in 2-ms steps from 2 to 100ms.
Since the simulations only ran up to tSE, the ASE signals were determined
using negative ASE offsets (i.e., τ< 0) and testing showed that the signal
difference for positive vs. negative τ was negligible (results not shown).
Simulations were performed using B0¼ 3 T, CBV¼ 2% (representing
venous CBV), Δχ¼ 4π⋅0.04 ppm, diffusion coefficient D¼ 0.8 μm2/ms,
and time step δt¼ 0.25ms. This Δχ approximately corresponds to vessels
with an SO2 of 60% and hematocrit of 40% and where tissue has the same
susceptibility as fully oxygenated blood (Berman et al., 2016; Spees et al.,
2001). Additional CBVs and Δχs were examined in the Supplementary
Material. Ten networks were randomly seeded with 1.0-μm vessels on a
10202 lattice with a side length of 255 μm isotropic. At this resolution,
each vessel could be sampled up to eight times across its diameter, and
using higher resolutions had a negligible impact on the results. These
networks were reused to perform the simulations for radii up to 20 μm by
assigning them an effective lattice size of 255 μm* R/1.0 μm. For
R) 20 μm, the same scaling was employed, however, the lattice was

resampled to a 63752 grid to ensure the diffusion kernel and field offset
map were sampled at a high enough spatial resolution. Only a single
diffusion coefficient was used throughout since it is not the diffusion co-
efficient alone that impacts signal evolution, it is diffusion time, definedby
the ratio of the squared vessel radius and the diffusion coefficient (R2/D).
Since vessel radii were varied from 1 to 100 μm, the effect of diffusion
variation was indirectly probed over a wide range. All simulations were
run using MATLAB R2015a (MathWorks, Natick, MA).

For the vessel-size distributions, the Lauwers distribution was ob-
tained using the parameters for the complete vessel network in (Lauwers
et al., 2008) with the radii ranging from 3.0 to 40 μm. The Frechet dis-
tribution was implemented in MATLAB using the gevrnd function with
the input parameters μ¼ 10.1 μm, σ ¼ 5.8, and k¼ 0.41 taken from
(Germuska et al., 2013) and with the radii ranging from 2.5 to 60 μm.

To evaluate the hypothesis that ln(SSE/SASE) may have a linear
dependence on TE, the ratio was calculated from the previous simula-
tions as a function of TE and τ. The calibration constant, M, was then
calculated from simulations with a finer division of radii from 1 to
100 μm and the Lauwers and Frechet radii distributions using two TEs to
fit for R2

0 and (R2,diff)2 with Eq. (7). This was tested with τ ¼ þ30 ms and
TEs of 40 ms and 50 ms. The fitted R2

0 values from the two different τ
values were substituted into Eq. (8) to calculate M using TEfunc¼ 30ms.
For comparison, M was also calculated at a single TE of 40 ms with
τ¼þ30 ms using Eq. (4), as in Blockley et al. (2015). These ASE-basedM
calculations were compared against the “ideal”M given by the maximum
possible gradient echo percent signal change at TE¼ 30ms. Since these
simulations ignored T2 relaxation, the maximum signal was taken to be 1.

Intrinsic T2 decay
To estimate the differential influence of intravascular and extravas-

cular T2 relaxation, the simulated signals (Ssim) from the Lauwers and
Frechet distributions were combined with a model for intravascular
signal decay (SIV), giving the net tissue signal,

SnetðTE; τÞ ¼ ð1" CBVÞ SsimðTE; τÞ expð " TE
&
T2;tÞ þ CBV SIV ðTE; τÞ;

(12)

where T2,t¼ 110ms was used for grey matter(Wansapura et al., 1999).
SIV is an analytical expression that describes the complete transverse
decay and refocusing of an ASE or SE sequence from a system in the
motional narrowing regime, such as blood (Berman and Pike, 2017):

SIV ðTE; τÞ ¼ exp

(
" γ
2

2
G0τ2D *

"
TE
τD

þ
!
1
4
þ TE

τD

"1
2

þ 3
2

" 2
!
1
4
þ TE " ðTE " τÞ=2

τD

"1
2

" 2
!
1
4
þ ðTE " τÞ=2

τD

"1
2
#)

exp
#

" TE
&
T2;bj0

$
;

(13)

Fig. 6. (a) Example 2D vessel map. The blue circles correspond to the vessel cross sections. (b) The random B0 directions assigned to each vessel. The directions are represented by the
arrows and are overlaid on a semi-transparent version of the vessel map. (c) The field offset map generated by the vessels. All the vessels were assigned the same susceptibility offset, Δχ,
and the map was normalized by B0Δχ.
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where G0 is the mean square field inhomogeneity, T2,bj0¼ 189ms is the
intrinsic T2 of blood, and τD¼ rc2/D with rc¼ 2.6 μm, the characteristic
size of red blood cells, and D¼ 2.0 μm2/ms is the diffusion coefficient of
blood. T2,bj0 and rc were obtained from fits to experimental blood
relaxometry data (Berman and Pike, 2017; Chen and Pike, 2009) and G0
is given by (Jensen and Chandra, 2000; Sukstanskii and Yablonskiy,
2003)

G0 ¼
4
45

Hctð1" HctÞð4π⋅0:27ppm⋅ð0:95" SO2ÞB0Þ2: (14)

Hct is the hematocrit of blood and was set to 40%, SO2 was set to 60%.
The maximum signal in this case is given by
Snet;max ¼ ð1" CBVÞexpð"TE=T2;tÞ þ CBV expð"TE=T2;bj0Þ, correspond-
ing to SO2¼ 95% (Spees et al., 2001). Rather than use just two echo times
for the q-ASE model, these comparisons used TEs of 40, 50, 60, and
70ms, to be consistent with the in vivo acquisition.

Random noise was also added to these simulations to examine the
impact of the signal-to-noise ratio (SNR) on the estimates of (R2,diff)2 and
M. These results are described in the Supplementary Material.

In vivo study

MR imaging
We evaluated the quadratic ASE model on nine healthy participants

(4 female, 5 male; 19–39 years of age; mean age¼ 28( 7 years) using a
3 T scanner (Discovery 750, GE Healthcare, Waukesha, WI). The study
was approved by our institutional review board and all participants gave
informed written consent. Subjects were scanned with a 2D ASE EPI
sequence with FLAIR preparation. Imaging parameters included: field of
view¼ 224* 224mm2; 96 * 96 matrix; bandwidth ¼ 250 kHz; slice
thickness ¼ 2.0 mm þ 1.0-mm gap; 34 slices (interleaved); flip
angle ¼ 90&; ASSET factor ¼ 2; four TEs of 42, 50, 60, and 70 ms; τ ¼ 0
and 30 ms; inversion time (TI)/repetition time (TR) ¼ 2.0/8.0 s. This
combination of TI/TR was determined to null the signal from CSF in
preliminary testing on two additional subjects. Slices were angled par-
allel to the anterior commissure-posterior commissure line and aligned to
the top of the brain, typically resulting in whole-cerebrum coverage and
partial cerebellum coverage. For each TE-τ image, 15 complex volumes
were acquired with two additional dummy volumes.

During the hypercapnic calibration, BOLD and CBF changes were
assessed with a dual-echo pseudo-continuous arterial spin labelling (ASL)
sequence with a 2D EPI readout and the following imaging parameters:
field of view¼ 224* 224mm2; 64 * 64 matrix; bandwidth ¼ 250 kHz;
slice thickness¼ 5.0 mm þ 1.0-mm gap; 18 axial slices acquired in a top-
down order; flip angle ¼ 90&; ASSET factor ¼ 1.5; TE1/TE2¼ 9.5/30ms;
TR¼ 3.6 s; ASL label duration¼ 1600ms; post-label delay¼ 900ms.
Slices were aligned to the top of the brain and the labelling plane was
located 20mm inferior of the most inferior slice. 100 vol were acquired
with four additional dummy volumes.

A separate B0 field map was acquired using a 2D, fast spoiled gradient
recalled echo, three-echo sequence with a monopolar readout, a field of
view matched to the ASE images, 256* 256 matrix, TE1¼ 4.45ms, echo
spacing¼ 2.1ms, TR¼ 500ms, and flip angle¼ 30&. High resolution
structural images were acquired using a 3D MP-RAGE acquisition
(Mugler and Brookeman, 1990) with a 1-mm isotropic resolution,
192* 256* 256 matrix, TR/TI/TE¼ 6.66/650/2.93ms, and 10& flip
angle.

Hypercapnia gas challenge
All subjects underwent a hypercapnic gas challenge in the MR scanner

consisting of breathing medical air for 2min, 5% CO2 in medical air for
2min, then medical air for 2min. Participants were delivered the gases
with an automated flow controller (FloBox 954, Sierra Instruments, Inc.,
L Monterey, CA) connected to a non-rebreathing circuit with an extended
expired gas reservoir that was open to the room at its end (Tancredi et al.,

2014). Gases were delivered at a constant flow rate of 20 l/min, and
partial pressures of oxygen and carbon dioxide in the breathing mask
were monitored with BIOPAC O2100C and CO2100C modules connected
to a BIOPAC MP150 acquisition unit (BIOPAC Systems, Inc., Goleta, CA).
The mean end-tidal partial pressures of CO2 (PETCO2) and O2 (PETO2) at
rest were determined from the 60 s of end-tidal measurements prior to
the hypercapnia challenge, and the mean changes in the end-tidal values
were determined from the final 60 s of the hypercapnia challenge.

Image processing
All image analysis was ultimately performed in the individual sub-

jects' ASL image space, however, image preprocessing was generally
performed in each image's native space. A combination of tools from
Statistical Parametric Mapping (SPM) 8 (Wellcome Trust Centre for
Neuroimaging, London, UK), FMRIB Software Library (FSL) v5.0.7
(Jenkinson et al., 2012), and MATLAB were used for image analysis.

For each TE-τ ASE combination, the image volumes were motion
corrected using SPM realign, complex-averaged across time, then con-
verted to magnitude images. The complex averaging preserved the noise
properties of the lower signal-to-noise ratio regions (Gudbjartsson and
Patz, 1995). The mean magnitude images were coregistered to the mean
TE/τ¼ 42/0ms image using SPM coreg and then brain extracted using
FSL BET (Smith, 2002). The TE/τ¼ 42/0ms brain extracted, distortion
corrected image is referred to as the ASE reference image. Geometric
distortion correction of the images was performed using the B0 field map
with FSL FUGUE (Jezzard and Balaban, 1995). The field map was fit by
nonlinear estimation in the complex domain (Liu et al., 2013) and
smoothed by fitting it to a 3D smoothing spline in MATLAB. Voxels in the
ASE images where the warp was greater than 1 voxel were excluded from
later analyses.

The ASL images were motion corrected using the SPM ASL toolbox
(Wang, 2012). Simultaneous geometric distortion correction and regis-
tration of the mean echo 1 image to the structural image was performed
using boundary-based registration with FSL's epi_reg utility (white matter
(WM) segmentation described below) (Greve and Fischl, 2009; Jenkin-
son and Smith, 2001). The distortion correction was then applied to all
echo 1 and echo 2 images.

Calculation of the M values was performed on anatomically defined
grey matter regions of interest (ROIs). Segmentation of the structural
image was performed using SPM8 new segment (Ashburner and Friston,
2005), giving tissue probability maps and the nonlinear deformation into
MNI space. The inverse deformation fields were used to transform four
atlas-based ROIs corresponding to the frontal, occipital, parietal, and
temporal lobes from MNI space to subject space (Mazziotta et al., 2001).
These ROIs were then multiplied with the GM tissue probability maps,
transformed to ASL-space, and thresholded at 0.75 to produce binary
masks. A fifth ROI consisting of all GM thresholded at 0.75 was also used.
The transformation matrices to the structural image for the ASE reference
image were estimated using epi_reg: given the lack of GM-WM contrast
and the pronounced CSF-parenchyma contrast in the FLAIR-ASE images,
the CSF segmentation was used for the contrast boundary.

Macroscopic field inhomogeneities unequally affect the ASE and SE
signal intensities and, hence, the apparent R2

0; therefore, several efforts
weremade to exclude regions of excess signal intensity distortions arising
from field inhomogeneities and to compensate for moderate signal
dropout. The field gradients across the slice, frequency, and phase encode
directions were calculated numerically by central differences on the
smoothed field map. The τ¼ 30ms ASE image intensities were corrected
for gradients across the slice, Gs, by dividing them on a voxel-wise basis
by the factor sinc(γGsτΔz/2π) (Yablonskiy, 1998), where
γ¼ 2.675* 108 rad/s/T is the gyromagnetic ratio of 1H, and Δz is the
slice thickness. The sinc correction method relies on an ideal square slice
profile; this assumption was tested using Bloch simulations of the pulse
sequence and bymeasurement of the slice profile in a phantom and it was
found to be in close agreement up to the first zero of the sinc function.
Voxels where the sinc term was less than 0.5 were excluded from the
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ROIs for analysis. In-plane field gradients can lead to gradual dephasing
and, for gradients above a critical threshold, can push the gradient echoes
in the EPI readout trajectory out of the k-space acquisition window,
resulting in abrupt signal loss (Deichmann et al., 2002; Weiskopf et al.,
2007). Therefore, only voxels where the in-plane gradient magnitude
was less than 50% of the critical gradient magnitude were included for
analysis. This corresponded to including voxels where the gradient
magnitude was less than 84 μTm"1 along the readout direction and less
than 56 μTm"1 along the phase encode direction. Despite these pre-
cautions, the estimated R2

0 values in the temporal lobe were still arte-
factually elevated; therefore, only slices superior to the cerebellum were
included in the ROIs for analysis.

Data analysis
After transformation of all ASE images into each subject's own ASL

space, their intensities were averaged across the five ROIs and the ratio of
the mean SE over the mean ASE signal was calculated at each echo time.
Non-linear fitting of this ratio vs. TE to the q-ASE model in Eq. (7) was
performed in MATLAB using lsqcurvefit with the trust-region-reflective
algorithm. This resulted in fits for R2

0 and (R2,diff)2 from which M was
then determined using the non-linearized version of Eq. (8). Whether the
q-ASE model statistically significantly increased the M values relative to
those determined using only the TE¼ 42ms data was assessed using a
single-sidedWilcoxon signed rank test for each ROI, with P< .05 deemed
significant.

For comparison,M was calculated across the ROIs from the dual-echo
ASL images during the hypercapnia challenge. To calculate CBF-
weighted changes, tag-control subtraction of the first echo images was
performed using sinc interpolation. The second echo images were used as
BOLD-weighted images. The percent signal changes of the BOLD and CBF
signals were determined from their modelled responses using a general
linear model analysis on the averaged signals across the ROIs (Bulte et al.,
2012). Both the averaged BOLD and CBF signal time courses were
modelled by convolving the hypercapnia stimulus paradigm with a
gamma-variate function with a mean lag of 30 s and a standard deviation
of 15 s (Mazerolle et al., 2016). The temporal derivative was included as
an additional regressor to account for temporal delays in the responses. In
the BOLD images only, linear drift and tag-control nuisance regressors
were included. M values for each ROI were then calculated using Eq. (2)
with α¼ 0.2 (Chen and Pike, 2010b) and β¼ 1.3 (Bulte et al., 2009;
Uludag et al., 2004). Whether the hypercapnic M values differed signif-
icantly from the ASE and q-ASE M values was determined using a
two-sided Wilcoxon signed rank test for each ROI, with P< .05 deemed
significant.

Results

Simulations

The quadratic decay term, (R2,diff)2, is visualized in Fig. 7 by plotting

the initial slope of ΔR2 vs. TE for the SE signals. The fitted slopes, which
give (R2,diff)2 by Eq. (6), appear to follow a sigmoidal relationship that is
monotonically decreasing with vessel radius, as shown in Fig. 7b. The
(R2,diff)2 values for the Lauwers and Frechet vessel radius distributions
are (14.1( 0.5) s"2 and (5.3( 0.6) s"2, respectively. From Fig. 7a and c,
if (R2,diff)2 was estimated by fitting the tangent at later times, there would
be an underestimation that would be worse for the smaller radii.

The log-ratio, ln(SSE/SASE), as a function of TE is shown in Fig. 8 for a
subset of τ offsets. For a given TE and given τ, the curves for each radius
are vertically offset from each other and they increase monotonically
with vessel size. This reflects the true difference in R2

0 for the different
vessel sizes that is widely known for GE BOLD (Boxerman et al., 1995). At
the vessel-size extremes of 1 μm and 100 μm, both ratios are relatively
flat as a function of TE. These arise from two different mechanisms,
however. The ratio is flat for the 1-μm simulations because the signal
rapidly transitioned from quadratic to linear decay, as observed in Fig. 3.
Conversely, the ratio is relatively flat for the 100-μm simulations because
the diffusion-induced SE attenuation is small since the scale of diffusion
is much less than that of the field offsets surrounding the vessels. In be-
tween these radii, it can be seen how the curves transition. For the
shortest τ offset, the slopes monotonically decrease with increasing
radius (ignoring the 1 μm simulations). At the later τ offsets, the slopes no
longer decrease monotonically with increasing radius but rather they
peak around 10 μm. This change in behaviour with increasing τ is the
result of the early quadratic decay being missed in the SE signals for the
smaller vessel sizes as TE is increased, as predicted above by Fig. 7.

The (R2,diff)2 and R2
0 values fitted from the log-ratios are plotted as a

function of τ in Supplementary Fig. S4. The apparent (R2,diff)2 values
obtained from fits of log(SSE/SASE) vs. TE were in poor agreement with
those from the fits of log(SSE) vs. TE; however, of consequence for cali-
bration, the R2

0 values were within 5% between the two fittings for the
intermediate-to-large vessels. The apparent (R2,diff)2 and R2

0 values at
τ¼ 30ms were then compared at more CBVs and Δχ values and plotted
in Fig. S5. It was found that both (R2,diff)2 and R2

0 followed functions of
the form

#
R2;diff

$2 ¼ a CBV ðΔχÞb
and
R'
2 ¼ c CBV ðΔχÞβ

(15)

where a and c are coefficients that depend on field strength, β is the
conventional exponent used in calibrated fMRI, and b is the equivalent
exponent for (R2,diff)2. Both (R2,diff)2 and R2

0 were linearly proportional to
CBV and b and β were remarkably similar; both were approximately 2
when the radius was 1 μm and decreased to ~1.1–1.2 for the 100-μm
simulations.

The log-ratios are shown for the Lauwers and Frechet vessel-size
distributions in Fig. 9. These results are consistent with those of the in-
dividual radii above. The error bar sizes vary between the two distribu-
tions because there were far more vessels per network in the Lauwers
simulations than the Frechet simulations. The vertical offset between the

Fig. 7. The TE dependence of ΔR2 for individual radii (in μm) (a) and for the two distributions of radii (c). Error bars in (a) and (c) show the mean( SD of the simulated ΔR2 values. The
initial relationships of ΔR2 vs. TE are plotted with the straight lines. The slopes of the lines reflect the (R2,diff)2 term and those values from (a) are plotted as a function of vessel radius in (b).
The slopes in (c) for the Lauwers and Frechet distributions are (14.1( 0.5) s"2 and (5.3( 0.6) s"2, respectively.
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two curves reflects the intrinsic differences in R2
0 between the two vessel-

size distributions; the Frechet distribution has larger ratios because its
vessel sizes are larger overall. The slope of the Lauwers curve at the
smallest τ is initially steeper than that of the Frechet curve but it plateaus
at the later echo times due to its smaller vessel size composition.

Fig. 10 shows the results of calculatingM using the ratio ln(SSE/SASE)
at a TE of 40ms with τ¼ 30ms (denoted MASE). When the ratio from
TE¼ 50ms was incorporated to calculate R2

0 and (R2,diff)2 using the q-
ASE model, almost all radii's M values were substantially increased
(denoted Mq-ASE). These ASE-based M values were compared against the
“ideal” M value (Mideal), calculated as the maximum possible GE BOLD
percent signal change at TE¼ 30ms. MASE only agreed to within 5% of
Mideal for radii >40 μm, whereas for Mq-ASE, this level of agreement was
attained for radii >7 μm. The corresponding estimated (R2,diff)2 values
are shown in Fig. 10b.

Intrinsic T2 decay
Similar results as the single-radiiM calculations above were observed

in the Lauwers and Frechet radius distributions, plotted in Fig. 11. To be
consistent with the in vivo acquisition, more echo times were incorpo-
rated into the q-ASE model. The (R2,diff)2 and M estimates decreased
when more echo times were incorporated with the Lauwers distribution
but they were relatively unchanged in the Frechet distribution. The
impact of adding intrinsic T2 decay to the simulations is also shown in
Fig. 11. M from the (q-)ASE fits and (R2,diff)2 were effectively unchanged
when T2 decay was added. Conversely, Mideal increased significantly for
both distributions. In additional testing not shown, it was found that the
increase inMideal was not the result of adding the intrinsic T2 of tissue but
was the result of the intravascular BOLD signal arising from the complete
saturation of venous blood.

As shown in Supplementary Figs. S7 and S8, when random noise of
varying levels was added to the simulations, the linear relationship of
log(SE/ASE) was quickly obscured. Despite this, the mean (R2,diff)2 andM
values were stable across different SNR levels but the variance of their
estimates increased with noise level.

In vivo imaging

The ratios of the SE and ASE signals, ln(SSE/SASE), were calculated for
all subjects from the image intensities averaged across the GM ROIs. In

one of the subjects, these ratios displayed substantially more variability
than in the other subjects resulting in this subject being excluded from
any analyses. The ratios from the remaining subjects are shown in Fig. 12
along with their model fits to Eq. (7). Included in Fig. 12 are the average
model fits derived from the mean of all subjects’ fitted R2

0 and (R2,diff)2.
Those fits are tabulated in Table 1.

The ASL data from another subject were excluded due to improper
labelling plane positioning. The remaining 7 subjects’ mean changes in
PETCO2 and PETO2 during the hypercapnia challenge were 9( 2mm Hg
and 15( 5mm Hg, respectively. The gas delivery was not iso-oxic
although this would only give an average change in arterial SO2 from
approximately 97% at rest to 98% during hypercapnia (Severinghaus,
1979), resulting in a negligible contribution to the BOLD signal.

Each individual subjects' and the mean across subjects’ calibration
constants in the GM ROIs, as determined from hypercapnia (MHC), ASE at
TE¼ 42ms (MASE), q-ASE fit with the first three TEs (Mq-ASE (3 TEs)), and
q-ASE fit with all four TEs (Mq-ASE (4 TEs)) are displayed in Fig. 12.

Discussion

Gas-free fMRI calibration holds great appeal for improving access to
calibrated fMRI methods; however, technical challenges still impede its
adoption. In this study, we have examined SE attenuation resulting from
diffusion through the microvasculature with the principal aim of being
able to compensate for this attenuation in calibration. Despite SE atten-
uation being a well-known phenomenon, it has generally been dis-
regarded in earlier studies using gas-free calibration (Fujita et al., 2006;
Kida et al., 2000; Shu et al., 2015) or acknowledged as a limitation of
current implementations (Blockley et al., 2015). Here, we have shown
that the attenuation substantially reduces the calibration constant when
estimated with ASE imaging, in line with previous analytical simulations
and in vivo measurements (Blockley et al., 2015), but that the underes-
timation can be compensated by acquiring additional ASE images.

Microvascular simulations

Using simulations from networks of vessels with identical radii and
from two different distributions of radii, the general nature of the SE
attenuation became much more apparent. By empirically describing the
attenuation by a quadratic-exponential decay early on and a linear-

Fig. 8. The log-ratio of the SE signal (τ¼ 0ms) over the ASE signal for three different ASE offsets, as a function of TE and vessel radius. The radii, in μm, are labelled in (c). Error bars
represent the mean( the standard deviation of the log-ratio across all simulated networks although they are mostly obscured by the connecting lines.

Fig. 9. The log-ratio of the SE signal (τ¼ 0ms) over the ASE signal for three different ASE offsets, as a function of TE and for the Lauwers and Frechet vessel-size distributions. The
distributions are labelled in (c). Error bars represent the mean( the standard deviation of the log-ratio across all simulated networks.
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exponential decay later, it was possible to identify several features of it: i)
the overall magnitude of the attenuation is largest for intermediate vessel
sizes; ii) the time to transition from quadratic to linear decay is propor-
tional to vessel size for the small-to-intermediate radii and peaks or
plateaus for larger radii; and iii) the attenuation at later ASE offsets (τ 6¼
0) can approximately be described by the SE (τ¼ 0) attenuation but
translated in time by τ and with an additional offset given by the intrinsic

R2
0 weighting. The first feature is already well known from SE BOLD

vessel-size sensitivity studies (Boxerman et al., 1995; Goense and Log-
othetis, 2006; Zhao et al., 2004). The second and third features are novel
findings of this study and led us to propose the quadratic ASE (q-ASE)
biophysical signal model, described by Eqs. (5)–(7), with the addition of
the diffusion-induced attenuation constant, (R2,diff)2. This model
correctly predicts that ln(SSE/SASE) underestimates M, and, crucially, it
allows for the underestimation to be quantified by measuring the SE and
ASE signals at two or more TEs. A model where the decay exponent was
not exactly 2 but was empirically determinedwas considered; however, it
was decided to keep the exponent at 2 based on the simplicity with which
it allows the fitting of ln(SSE/SASE) vs. TE and based on the success with
which it corrected the M values in simulations. In contrast to the simu-
lations here, previous analytical calculations using a detailed BOLD
signal model accounted for SE attenuation by modelling it as a linear
exponential decay (Blockley et al., 2012, 2015). Those calculations also
predicted an underestimation ofM, however, as discussed in the Theory,
the linear decay does not provide a means by which it can be easily
corrected.

A consequence of the transition from quadratic to linear decay is that
the window of time to characterize the SE attenuation is limited: once the
signal transitions to linear-exponential decay, the attenuation becomes
indistinguishable from intrinsic R2 and gives a decreased apparent R2

0

(and, therefore, decreased M). This is evident when comparing the

Fig. 10. (a) Radius-wise comparison of the ideal M values (Mideal) calculated from the maximum GE BOLD signal at TE¼ 30ms vs. M when calculated using ln(SSE/SASE) at a TE of 40ms
with τ¼ 30ms (MASE) and M when calculated using the quadratic ASE signal model (Mq-ASE) to fit for R2

0 and (R2,diff)2 with SE and ASE signals at TE¼ 40 and 50ms. (b) The estimated
(R2,diff)2 values from the q-ASE model for each vessel radius. Error bars represent the mean( the standard deviation across all simulated networks.

Fig. 11. Impact of intrinsic T2 decay and number of echo times included in the q-ASE
model on M (a) and (R2,diff)2 (b) of the Lauwers and Frechet vessel size distributions. The
ASE echo time was 40ms, and the q-ASE model was fit at echo times of 40, 50, 60, and
70ms using the first n¼ two to four echo times (nTEs).

Fig. 12. The log-ratio of the in vivo SE signal over the ASE signal as a function of TE for the grey matter (GM) ROIs. Individual subjects' values are plotted with the coloured markers and
their resulting fits to Eq. (7) with the first three TEs are plotted with the coloured dashed lines. The mean fits are represented by the solid black lines. All axes share the same set of axis
labels as (a).

Table 1
The mean( SD in vivo (R2,diff)2 values across the grey matter (GM) ROIs of 8 subjects. The
fits for (R2,diff)2 were performed using either the first three echoes or all four echoes.

# of Echoes in q-
ASE Fit

Mean (R2,diff)2 [s"2]

Frontal
GM

Occipital
GM

Parietal
GM

Temporal
GM

All Grey
Matter

3 "0.1( 18 17( 20 12( 16 10( 24 6( 12
4 "1( 11 9( 10 6( 7 3( 15 2( 7
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estimated (R2,diff)2 values from the simulations in Fig. 10b with the true
(R2,diff)2 values in Fig. 7. The true (R2,diff)2 values are largest for the
smaller radii and decrease monotonically with increasing radius, how-
ever, the estimated (R2,diff)2 values peak for the intermediate vessel sizes.
Because of this, the q-ASE model is still unable to effectively compensate
for the underestimation in M for the smallest vessel sizes, whereas it
performs remarkably well for intermediate to large radii. Physiologically,
this would correspond to the correction working for most post-capillary
vessels if one takes the upper cut-off radius for capillaries to be
~4–5 μm (Gagnon et al., 2015; Lauwers et al., 2008; Pawlik et al., 1981;
Sakadzic et al., 2014; Stefanovic et al., 2008). (R2,diff)2 was further
characterized by its dependence on CBV and Δχ in the Supplementary
Materials. There, it was shown that it behaved much like how R2

0 is
known to; it was linearly proportional to CBV and non-linearly propor-
tional to Δχ with an exponent that was very close to the conventional β
value.

The q-ASE modelling on the simulations from the vessel-size distri-
butions was relatively unchanged when T2 decay was added. This is
reassuring as this was a principal motivating factor for using the ASE
imaging method.

In vivo imaging

Encouraged by the simulation results, we sought to determine the
feasibility of measuring (R2,diff)2 in vivo and to compensate for the SE
attenuation during calibration. We measured SE and ASE images
(τ¼ 30ms) at TEs of 42, 50, 60, and 70ms with the CSF signal nulled to
avoid its contamination of R2

0. Anticipating that the ratio of the SE over
the ASE signal could plateau at later echo times, we fit for (R2,diff)2 and
R2

0 using either the first three TEs or all four. Independent of the number
of TEs, there was considerable variability in the fits across subjects that

resulted in positive and negative values for (R2,diff)2; however, for all but
the frontal GM ROI, the mean fits resulted in positive (R2,diff)2 (Table 1).
The mean measured values were in line with those predicted by the
simulations and the associated variability was consistent with the sim-
ulations when noise was added to them (see Supplementary Figs. S7 and
S8).

The mean (R2,diff)2 values were larger for the three-TE fits vs. the four-
TE fits, perhaps implying that ln(SSE/SASE) does plateau beyond
TE¼ 60ms. The resulting increases in M were significant in the occipital
and parietal ROIs for the three-TE fit but not the four-TE fit, further
suggesting that the data at the later echoes should not be used (Fig. 13).
Based on the simulations from the two different vessel-size distributions,
the Lauwers distribution showed a similar decrease in M when later
echoes were included in the fits, as shown in Fig. 11. This may suggest
that distribution is more representative of the venous/capillary vessel
sizes in grey matter. Relative to hypercapnia, the ASE-basedM estimates
all underestimated MHC, although the underestimation was not statisti-
cally significant for all comparisons. When compared against simulations
with or without intrinsic T2 decay, the ideal M values increased when T2
decay was included such that the gaps between the ideal M and the (q-)
ASE M calculations all widened. The increase in the ideal M values was
due almost entirely to the intravascular BOLD signal. This is consistent
with current knowledge of the BOLD signal where it is known that IV
signal has a significant contribution to the BOLD effect at field strengths
of 1.5 T and 3 T because of hydrogen nuclei's proximity to hemoglobin
(Donahue et al., 2011).

Multiple reasons factored into the decision to use a single ASE offset
in vivo. Practically, ASE and SE images were acquired at four different TE
values, resulting in the acquisition time being just over 18min. Adding
one more tau value would have increased the acquisition time to over
27min and was considered impractical. Theoretically, it has recently

Fig. 13. Comparison of M in the grey matter ROIs across seven subjects. M was measured using hypercapnia (HC), from the first ASE echo time (ASE (TE ¼ 42 ms)), with the q-ASE model
fit to the first three TEs (q-ASE (3 TEs)), or all four TEs (q-ASE (4 TEs)). Each individual subjects' values are represented by the square symbols and a separate colour and the mean ( SD
across subjects is represented by the solid black line. * denotes the ASE or q-ASE M values were significantly different from the HC values (P< .05). # denotes the q-ASE M values were
significantly greater than the ASE (TE¼ 42ms) M values (P< .05).
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been shown by Stone and Blockley (2016) that using larger tau values –
comparable to the lower of T2 or T20 – will improve the accuracy of R2

0

estimates. This was derived using the conventional ASE model, ignoring
the effect of diffusion. From our simulations, however, the q-ASE model
held at lower echo times and was likely to lose its applicability beyond TE
~70ms. Given this, a trade-off between obtaining a biased estimate of
R2

0 with increased precision vs. an accurate estimate of R2
0 and (R2,diff)2

with lower precision existed. A value of τ¼ 30ms was settled on, such
that the signal difference between τ¼ 0 and 30ms could be sufficiently
measured and a range of shorter TEs could be used.

Note that althoughMHC was used for comparison, this does not imply
that it is the standard for calibration. As discussed in the Introduction,
hypercapnic calibration suffers from its own setbacks and technical
challenges, including what exact values to use for α and β (Gagnon et al.,
2016; Griffeth and Buxton, 2011). This means that the true magnitude of
the underestimation ofM in the ASEmethods could be less (or more) than
implied by the comparison against MHC. Furthermore, if CMRO2 were to
decrease during the hypercapnic challenge, then the true MHC would be
less than the estimated value and could account for a significant fraction
of the discrepancy (Driver et al., 2017; Xu et al., 2011). An alternative
measurement of R2

0 may be a more appropriate comparison. This could
consist of separate multi-echo GE and SE acquisitions, using a relatively
short SE spacing to reduce the impact of diffusion-induced attenuation. In
this case, multi-exponential decay would complicate the comparison but
a correction could be incorporated (Fujita et al., 2006).

When compared against the study by Blockley et al. (2015), the
measuredMASE values relative toMHC values are consistent. In that study,
SE and ASE images were acquired at a single TE of 40ms with a spiral
readout with a marginally higher in-plane resolution, the same slice
thickness, no CSF suppression, and similar post-processing steps. The
mean ratio of MASE/MHC across all GM was +0.9 in that study and +0.7
here for the 42-ms TE data. The reduced ratio was expected in our study
because CSF suppression has been shown to reduce R2

0 estimates in GM
by ~20–30% (Simon et al., 2016; Stone and Blockley, 2016). This further
underscores the importance that SE attenuation likely plays in the
resulting underestimation of R2

0 and M.

Biophysical signal modelling

The q-ASE signal model presented here is complementary to bio-
physical signal models that propose a Gaussian signal characteristic
about the spin echo (He and Yablonskiy, 2007; Mulkern et al., 2014;
Yablonskiy and Haacke, 1994). These signal models typically assume
perfect SE refocusing and describe a Gaussian-like decay around the spin
echo with respect to TE or τ, whereas the q-ASE model describes a
Gaussian-like decay of the spin echo itself as a function of TE. These
Gaussian SE signal characteristics are still present in our simulations (see
the individual time series in Fig. 2) since the simulations used no as-
sumptions about the underlying frequency distribution shape (e.g. Lor-
entzian or Gaussian) other than that the individual fields produced by the
vessels are modelled as dipoles from infinite cylinders. The quantitative
BOLD model is one such model of Gaussian signal decay around the SE,
and it is used to relate R2

0 to deoxygenated-CBV and SO2 (He and
Yablonskiy, 2007). Since this model ignores the effects of diffusion, it
may benefit from the q-ASE model by correcting its estimate of R2

0.

Limitations and future work

An important limitation of this study is that it ignored the contribu-
tions of non-heme sources of susceptibility to R2

0 and it did not show any
causal relationship between the measured (R2,diff)2 and R2

0 parameters
and blood oxygenation. The concentration of non-heme iron is known to
increase in many brain regions during healthy aging, including in deep
GM primarily but also in cortical GM (Hallgren and Sourander, 1958). R2,
R2*, R2

0 and susceptibility have all been shown to correlate with
post-mortem regional iron concentrations (Li et al., 2014; Ordidge et al.,

1994; Sedlacik et al., 2014; Stuber et al., 2014). The R2
0 values in cortical

GM from Sedlacik et al. (2014) were not in agreement with the linear
regression performed on the subcortical GM R2

0 values vs. the literature
iron concentrations of Hallgren and Sourander (1958). This may suggest
that the R2

0 of cortical GM is less affected by iron deposition over the
course of healthy aging. In post hoc testing, none of the percent differ-
ences betweenMHC and Mq-ASE(3 TEs) were statistically significant when
regressed against subject age (from 19 to 39 years). This could be because
both Ms were most strongly dependent on vascular physiology than on
non-heme sources but the small cohort size might also limit the
measurability of true differences with age. While beyond the scope of this
study, these factors could be teased apart by repeating the ASE imaging
experiments during a hypercapnia or hyperoxia challenge. In doing this,
the heme contributions to R2

0 and (R2,diff)2 would decrease (for increasing
SO2) and the non-heme contributions would be unchanged. Given the
large variability of (R2,diff)2 measured here, either the imaging technique
would require further refinement to be more sensitive to the small
changes in (R2,diff)2 expected from a gas challenge or a larger cohort of
participants would be needed.

An additional limitation of estimatingM from a measure of R2
0 at rest

is that it does not capture IV BOLD signal, as discussed above. It may be
possible to circumvent the IV BOLD issue by applying IV crushers during
the subsequent functional experiments (An and Lin, 2003; Hare and
Bulte, 2016), although this will decrease the detection sensitivity.

Despite considerable efforts to reduce R2
0 contributions from macro-

scopic field inhomogeneities in vivo, the results in the frontal and tem-
poral ROIs were still inconsistent with the results in the occipital and
parietal ROIs. The M values in the frontal and temporal ROIs were in the
range of the other ROIs’, suggesting that the bulk effects of the field in-
homogeneities were largely avoided; however, the increase inM from the
q-ASE model failed to reach statistical significance in the frontal and
temporal ROIs, suggesting that there was increased signal variability in
these regions that could arise from residual field effects. In future studies,
further increasing the spatial resolution and/or performing z-shimming
could help alleviate these issues but at the expense of increased readout
and/or scan time (Ordidge et al., 1994).

Efforts to minimize the impact of macroscopic inhomogeneities on R2
0

could possibly explain some of the underestimation of M relative to hy-
percapnia since signal loss from long-ranging field gradients originating
from large veins will be reduced if the voxel size is reduced (Turner,
2002). These effects will also be dependent on the orientation of the
cortical surface relative B0 (Gagnon et al., 2015). Our simulations did not
account for any macroscopic or mesoscopic non-random vessel orienta-
tion effects, although it has been shown that the GE BOLD effect has a
strong dependence on cortical orientation relative to B0 because of
long-ranging field gradients from pial veins (Gagnon et al., 2015). The
orientation effects were significantly less for SE BOLD relative to GE
BOLD (Gagnon et al., 2015), therefore, we do not expect the quadratic
ASE attenuation described here to be substantially impacted by
non-random vessel orientation. Consequently, while baseline R2

0 may be
influenced by cortical orientation, the quantification of the SE attenua-
tion should not be significantly impacted.

Ideally, one would like to apply the q-ASE correction using an in-
dividual's measured (R2,diff)2 parameter. Unfortunately, this measure-
ment added considerable time to the scan and it was quite variable on the
individual subject-level – requiring the data from one subject to be
excluded from analysis. Although (R2,diff)2 depends on CBV and SO2, it
may be more beneficial to acquire SE and ASE images at a single TE and
to apply the q-ASE correction using an assumed (R2,diff)2 value or by
relating it to the apparent R2

0 since they were found to have similar de-
pendences on CBV and SO2. This would be akin to the calibrated fMRI
parameter β, which could be measured in vivo (Croal et al., 2017; Shu
et al., 2016) but is generally assumed a constant across the brain.
Considering the (R2,diff)2 values from the simulations and the in vivo
measurements, a value around 10–15 s"2 may be appropriate.

Here, we have presented a comparison of different methods for
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estimating the calibration constant, M, with the viewpoint that this is a
tissue parameter – effectively, a scaling of R2

0 and dependent on CBV,
SO2, vessel size, field strength, etc. However, the goal in a calibrated
fMRI experiment is to measure changes in CMRO2 using the measuredM
parameter. Recent simulation studies of the calibration process suggest
that the final application of the calibration model depends on how cali-
bration was performed and requires optimized values of the parameters α
and β to obtain the most accurate measure of CMRO2 changes (Gagnon
et al., 2016; Griffeth and Buxton, 2011). This necessitates dropping the
original biophysical associations of M, α, and β and rather using them as
empirical model-dependent parameters. Considering this, the α and β
values used for hypercapnic calibration may not be optimal for calibrated
fMRI using a gas-free estimate of M and they should be evaluated and
optimized in future work.

The concept of the model dependence of M was extended by Simon
et al. (2016), where M was never explicitly calculated but an estimate of
resting R2

0 was used in a Bayesian model to calculate changes in CMRO2
in subsequent functional experiments. R2

0-based calibration in their study
was found to be sensitive to several parameters, including imperfect spin
echo refocusing in the capillary bed. Their input signal model assumed
perfect SE refocusing beyond the capillary bed but our results show that
the SE attenuation in intermediate sized venules is still substantial and
should not be ignored. With the characterization of the vessel-size and
SO2 dependence of (R2,diff)2 performed here, incorporation of a signal
model with (R2,diff)2 could potentially reduce the Bayesian model's
sensitivity to imperfect SE refocusing, not only for capillaries but for
larger post-capillary venules too. Conversely, application of the Bayesian
model to (R2,diff)2 measurements could help reduce the error propagation
from the noisy measurement encountered here. It should be noted that
study measured R2

0 with two gradient echo sampling of the spin echo
(GESSE) sequences – one with the SE occurring at 48ms and the other at
98ms. Two SE times were used to account for multi-exponential decay.
We have shown here that even SE times of 40ms will suffer from SE
attenuation, therefore these GESSE sequences would underestimate R2

0;
however, as discussed above, incorporating a model of SE attenuation
may help alleviate this. The early SE time could be used to correct for the
SE attenuation, and the later SE time could still be used in the
multi-exponential decay correction.

Conclusions

In this study, we sought to characterize the attenuation of SE and ASE
signals arising from diffusion of water surrounding the microvasculature.
Using simulations, we have shown how this attenuation varies for
different vessel sizes, blood volumes, and susceptibility offsets, and how
it impacts gas-free calibrated fMRI based on ASE imaging. We have
proposed that the initial attenuation be described as a quadratic-
exponential decay term, (R2,diff)2, such that it can be measured and
compensated for by acquiring SE and ASE signals at multiple echo times.
This strategy successfully corrected the underestimation of the fMRI
calibration constant in the simulations for intermediate vessel radii and
above. By replicating these experiments in vivo in healthy subjects, we
showed that the M values obtained from the ratio of the SE and ASE
images at a single TE could be significantly increased by incorporating
the ratios from later TEs; however, they still tended to underestimate the
M values obtained from the more common hypercapnic calibration.
Future studies of gas-free calibration and R2

0 imaging will benefit from
incorporating an estimation of (R2,diff)2 in their fitting or using an
assumed value to compensate for the underestimation of R2

0.
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S1. q-ASE Model Assumptions 
 

S1.1 Quadratic-to-Linear Transition 

 

To determine whether the spin echo attenuation displayed in Fig. 3 was best described by linear-

exponential or quadratic-exponential decay, log(SASE) was fit vs. TE to a linear polynomial 

(fitting for an intercept and slope) and to the q-ASE model (fitting for R2¢ and (R2,diff)2). The two 

models were fit using a sliding window of width 10 ms, starting at TE = τ, and shifting in 2-ms 

increments. The quality of fit at each window position was assessed using the coefficient of 

determination (R2). The ratio of the q-ASE to linear R2 values was calculated such that the q-

ASE model outperformed the linear model if the ratio was greater than 1. 

 

 The R2 ratios are shown in Fig. S1 as a function of TE for four τ values. The decrease of 

this ratio over time shows the transition from quadratic to linear decay. All the R2 ratios were 

greater than or approximately equal to 1. To show how the time to transition from quadratic to 

linear decay depends on vessel size, the time where the R2 ratio drops below a threshold of 1.01 

is plotted in Fig. S2. This figure indicates that the time to transition increases with vessel radius 

up to approximately 20 µm. Beyond 20 µm, the transition time slowly decreases (bearing in mind 

the semi-logarithmic scale). Excluding the τ = 0 transition time curve, the curves are 

approximately shifted versions of each (vertically shifted by τ), further supporting the 

observation in Fig. 3 that the ASE decays for a given radius are shifted versions of each other 

from τ-to-τ. 
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Fig. S1: The ratio of the coefficients of determination (R2) of the q-ASE fit vs. the linear fit to 

log(SASE). The grey line shows where the ratio equals 1. For each ASE offset, curves begin at TE 

= τ + 10 ms (the sliding window width). 

 

 

Fig. S2: The quadratic to linear decay transition times for each ASE offset. Transition times are 

defined as the time where the R2 ratios from Fig. S1 are less than 1.01. Each ASE offset is labeled 

on the left and plotted with a different line style. 
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S1.2 q-ASE Fit Parameters 

 

To further verify the validity of the q-ASE model, it was fit to log(SASE) vs. TE from TE = τ to 

TE = τ + 30 ms. This was performed at every possible τ value, giving the dependence of R2¢ and 

(R2,diff)2 on τ. If the log(SASE) curves are shifted versions of each other, (R2,diff)2 should be 

constant, as it dictates the curvature of the quadratic. R2¢ is expected to vary with τ until it 

plateaus at some value since it is known that T2
* decay asymptotically approaches 

monoexponential decay (Yablonskiy and Haacke, 1994). 

 

 Fig. S3 shows the results of these fits. (R2,diff)2 is not constant across τ, although it does 

change slowly. This variation consists of an increase to some peak value followed by a decrease. 

Excluding the 1-µm simulations, the magnitude of (R2,diff)2 monotonically decreases with radius, 

consistent with Fig. 7, for all τ values. The rise and fall of (R2,diff)2 also appears to occur more 

rapidly as the vessel size increases. 

 

 

Fig. S3: The (R2,diff)2 (top) and R2¢ (bottom) values estimated from the simulations when log(SASE) 

vs. TE was fit to the q-ASE model at each ASE offset (τ). Markers represent the mean across all 

networks ± the standard deviation. Each colour represents a different vessel radius, specified in 

the bottom figure’s legend. 
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S1.3 q-ASE Log-Ratio Fit Parameters 

 

In practice, the ratios of the SE and ASE signals are used when estimating R2¢ since this removes 

the T2-dependence of the individual signals. From Eq. (7), the q-ASE model predicts that the 

logarithm of that ratio has a linear dependence on TE when τ is held fixed. This ratio was 

therefore fit from TE = τ to TE = τ + 30 ms at each τ value to see how the estimates of R2¢ and 

(R2,diff)2 depend on τ. The degree to which the log-ratio showed the linear decay was quantified 

using the coefficient of determination. 

 

The fit results are shown in Fig. S4 along with the percent difference between the (R2,diff)2 

and R2¢ estimates obtained from the log-ratio and from the ASE signals, alone, in Fig. S3. In Fig. 

S4(b), the (R2,diff)2 estimates vary massively between the two different fittings. Despite this, 

excluding the two smallest vessel sizes, R2¢ agreed within ±5% between the two fittings. In the 

scope of calibrated fMRI, this latter result is of prime importance since R2¢ alone dictates the M 

value when calculated using Eq. (8). Finally, it can be seen how the R2 values of the smaller 

vessels are lowest and gradually increase. The increase of the R2 values reflects the transition 

from the quadratic to linear decay regimes, where the log(SSE/SASE) points do not lie along a 

straight line while transitioning (see Fig. 8). 

 

The discrepancy between the (R2,diff)2 estimates is surprising, however, given that the R2¢ 

estimates are sufficiently accurate, this discrepancy will be considered in future studies. Given 

that the log-ratio fitting is what would typically be performed experimentally, we refer to its 

estimates of (R2,diff)2 and R2¢ as their apparent values. 
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Fig. S4: The (R2,diff)2 (a) and R2¢ (c) values estimated from the simulations when the log-ratio, 

log(SSE/SASE), vs. TE was fit linearly to the q-ASE model at each ASE offset (τ). The coefficients 

of determination (R2) at each τ for all vessel sizes are plotted in (e). The percent difference between 

the (R2,diff)2 and R2¢ values estimated from the log-ratio vs. estimated from the raw signals 

themselves (log(SASE)) are plotted in (b) and (d). (f) shows a zoom-in of the R2¢ differences within 

the range enclosed in the dashed black box in (d). Each colour represents a different vessel radius, 

specified in the legend in (e). 

 

S2. Physiological Variability 
 

The applicability of the q-ASE model to a range of physiological parameters was assessed by 

simulating the ASE signals with multiple venous cerebral blood volumes (CBV) and blood-tissue 

susceptibility offsets (Δχ). The preliminary simulations used CBV = 2% and Δχ = 4´10-8, where 

this Δχ approximately corresponds to the susceptibility offset when blood oxygen saturation 

(SO2) = 60% and hematocrit (Hct) = 40%. The simulations were repeated with CBV = 4 and 6%, 

while Δχ was held constant at 4´10-8. The effect of Δχ was probed with two additional values by 
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considering the range of plausible venous SO2 to be 50–70% and Hct to be 35–50%. The 

simulations were then run with the combination of SO2 and Hct that produced the extreme 

largest and smallest susceptibility offsets while CBV was held constant at 2%. Those 

combinations were SO2 = 50% and Hct = 50% (Δχ = 6.6´10-8) and SO2 = 70% and Hct = 35% 

(Δχ = 2.8´10-8). 

 

 (R2,diff)2 and R2¢ were found to have linear dependences on CBV in all the comparisons 

examined and these dependences were the same for all vessel radii. As a result, the quadratic to 

linear decay transition times were virtually unchanged between all CBVs. Fig. S5(a) and (c) 

show the linear CBV dependence of the apparent (R2,diff)2 and R2¢ values when obtained from the 

log-ratio fits at τ = 30 ms. 

 

 

Fig. S5: The CBV and Δχ dependences of the apparent (R2,diff)2 and R2¢ values at τ = 30 ms. The 

CBV dependences of both (R2,diff)2 (a) and R2¢ (c) are linear. The Δχ dependences of (R2,diff)2 (b) 

and R2¢ (d) are both non-linear and depend on vessel size. Legends in each figure show the radii, 

and the values in parentheses are the exponents relating (R2,diff)2 and R2¢ to Δχ for each radius. 
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The Δχ dependence of (R2,diff)2 and R2¢ was non-linear and varied between vessel radii, as 

shown in Fig. S5(b) and (c). These dependences were fit to functions of the form y = a(Δχ)b, 

where, in the case of R2¢, b is the same as β used in the calibrated fMRI model. The fitted b 

values are listed in the figure legends. 

 

The times to transition from quadratic to linear decay also changed with Δχ, as shown in 

Fig. S6. For the earlier τ’s, the transition times generally decreased slightly with Δχ, whereas, at 

the later τ’s, the times were a bit more variable and increased slightly with Δχ. The overall trend 

being that the transition time increases with vessel radius and either plateaus or decreases beyond 

a given radius. With increasing vessel radius, the simulations approach that of no diffusion, 

where neither quadratic nor linear decay is exhibited. In this case, it is unclear whether the 

transition time should be asymptotically approaching an infinite value or zero. Intuitively, we 

believe it is the former since it will take longer to accrue irreversible phase through diffusion as 

the vessel size increases, therefore, extending the transition time. Practically, however, the 

transition time of the largest vessels is unimportant as refocusing is sufficient to accurately 

estimate R2¢. 
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Fig. S6: The quadratic to linear decay transition times for each ASE offset and each susceptibility 

offset (Δχ). Transition times are defined as the time where the R2 ratios of the q-ASE to linear fits 

are less than 1.01. Each ASE offset is labeled on the left and plotted with a different line type. 

Each Δχ is plotted with a different colour, following the legend along the bottom. 

 

 

S3. Impact of Signal-to-Noise Ratio 
 

The impact of signal-to-noise ratio (SNR) on the estimates of (R2,diff)2 and M was examined using 

the signal model with intra- and extra-vascular T2 decay described in section 3.2.1. Gaussian 

white noise was added to the simulated signals from the Lauwers and Frechet networks, such that 

the signal at TE/τ = 40/30 ms would have the desired SNR. SNR values ranged from 100 to 400 

with 1000 randomizations of each noise level. 

 

 These results are summarized in Fig. S7 and Fig. S8 for the Lauwers and Frechet 

distributions, respectively. For both distributions, figures (a)–(d) show that a very high SNR is 

required to preserve the true individual networks’ log-ratios and the slopes (proportional to 

(R2,diff)2) vary considerably. The net result is that the error bars on the fitted (R2,diff)2 and M values 

rapidly grow as SNR decreases. Despite this increase in variability, the mean fitted values were 

relatively unchanged. 
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For comparison to the in vivo results, after motion correction of the in vivo acquisitions, the 

mean over the standard deviation across time (i.e., time-SNR) of the TE/τ = 42/30 ms images 

was approximately 40 to 50 in grey matter. Since the 15 repetitions were averaged across time, 

the resulting SNR was ~150–200 (=40–50 ´ Ö15). The SNR of the in vivo acquisitions was 

further increased since the signals were averaged across regions of interest. Therefore, the in 

vivo SNR was likely a minimum of 150. 

 

 

Fig. S7: Impact of signal-to-noise ratio (SNR) on log(SSE/SASE) (a)–(d) and the resulting estimates 
of M (e) and (R2,diff)2 (f) for the Lauwers vessel size distribution. (a)–(d) show examples of the 
ASE log-ratio, with each coloured symbol corresponding to simulations from a different vessel 
network and different instantiation of noise. Dashed lines correspond to the predicted ratios when 
(R2,diff)2 and R2¢ were fit using the first three echo times (TE = 40 to 60 ms). The bar plots in (e) 
and (f) show the mean fitted values and the error bars correspond to the standard deviation. SNR 
= Inf corresponds to the case where no noise was added to the simulations and the variability arises 
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from the inherent variation from simulation network to network. In all cases, no noise was added 
to the reference simulations (Mideal, red bars). 

 

Fig. S8: Impact of signal-to-noise ratio (SNR) on log(SSE/SASE) (a)–(d) and the resulting estimates 
of M (e) and (R2,diff)2 (f) for the Frechet vessel size distribution. (a)–(d) show examples of the ASE 
log-ratio, with each coloured symbol corresponding to simulations from a different vessel network 
and different instantiation of noise. Dashed lines correspond to the predicted ratios when (R2,diff)2 
and R2¢ were fit using the first three echo times (TE = 40 to 60 ms). The bar plots in (e) and (f) 
show the mean fitted values and the error bars correspond to the standard deviation. SNR = Inf 
corresponds to the case where no noise was added to the simulations and the variability arises from 
the inherent variation from simulation network to network. In all cases, no noise was added to the 
reference simulations (Mideal, red bars). 
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